3.23 \(\int \frac{(e+f x)^2 \cosh ^2(c+d x)}{a+b \text{csch}(c+d x)} \, dx\)

Optimal. Leaf size=510 \[ -\frac{2 b f \sqrt{a^2+b^2} (e+f x) \text{PolyLog}\left (2,-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b f \sqrt{a^2+b^2} (e+f x) \text{PolyLog}\left (2,-\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}\right )}{a^3 d^2}+\frac{2 b f^2 \sqrt{a^2+b^2} \text{PolyLog}\left (3,-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^3}-\frac{2 b f^2 \sqrt{a^2+b^2} \text{PolyLog}\left (3,-\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}\right )}{a^3 d^3}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}+1\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}+1\right )}{a^3 d}+\frac{b^2 (e+f x)^3}{3 a^3 f}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}+\frac{f^2 \sinh (c+d x) \cosh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \sinh (c+d x) \cosh (c+d x)}{2 a d}+\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f} \]

[Out]

(f^2*x)/(4*a*d^2) + (e + f*x)^3/(6*a*f) + (b^2*(e + f*x)^3)/(3*a^3*f) - (2*b*f^2*Cosh[c + d*x])/(a^2*d^3) - (b
*(e + f*x)^2*Cosh[c + d*x])/(a^2*d) - (f*(e + f*x)*Cosh[c + d*x]^2)/(2*a*d^2) - (b*Sqrt[a^2 + b^2]*(e + f*x)^2
*Log[1 + (a*E^(c + d*x))/(b - Sqrt[a^2 + b^2])])/(a^3*d) + (b*Sqrt[a^2 + b^2]*(e + f*x)^2*Log[1 + (a*E^(c + d*
x))/(b + Sqrt[a^2 + b^2])])/(a^3*d) - (2*b*Sqrt[a^2 + b^2]*f*(e + f*x)*PolyLog[2, -((a*E^(c + d*x))/(b - Sqrt[
a^2 + b^2]))])/(a^3*d^2) + (2*b*Sqrt[a^2 + b^2]*f*(e + f*x)*PolyLog[2, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2])
)])/(a^3*d^2) + (2*b*Sqrt[a^2 + b^2]*f^2*PolyLog[3, -((a*E^(c + d*x))/(b - Sqrt[a^2 + b^2]))])/(a^3*d^3) - (2*
b*Sqrt[a^2 + b^2]*f^2*PolyLog[3, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))])/(a^3*d^3) + (2*b*f*(e + f*x)*Sinh[
c + d*x])/(a^2*d^2) + (f^2*Cosh[c + d*x]*Sinh[c + d*x])/(4*a*d^3) + ((e + f*x)^2*Cosh[c + d*x]*Sinh[c + d*x])/
(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 1.109, antiderivative size = 510, normalized size of antiderivative = 1., number of steps used = 21, number of rules used = 15, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.536, Rules used = {5594, 5579, 3311, 32, 2635, 8, 5565, 3296, 2638, 3322, 2264, 2190, 2531, 2282, 6589} \[ -\frac{2 b f \sqrt{a^2+b^2} (e+f x) \text{PolyLog}\left (2,-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b f \sqrt{a^2+b^2} (e+f x) \text{PolyLog}\left (2,-\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}\right )}{a^3 d^2}+\frac{2 b f^2 \sqrt{a^2+b^2} \text{PolyLog}\left (3,-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^3}-\frac{2 b f^2 \sqrt{a^2+b^2} \text{PolyLog}\left (3,-\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}\right )}{a^3 d^3}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}+1\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (\frac{a e^{c+d x}}{\sqrt{a^2+b^2}+b}+1\right )}{a^3 d}+\frac{b^2 (e+f x)^3}{3 a^3 f}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}+\frac{f^2 \sinh (c+d x) \cosh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \sinh (c+d x) \cosh (c+d x)}{2 a d}+\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f} \]

Antiderivative was successfully verified.

[In]

Int[((e + f*x)^2*Cosh[c + d*x]^2)/(a + b*Csch[c + d*x]),x]

[Out]

(f^2*x)/(4*a*d^2) + (e + f*x)^3/(6*a*f) + (b^2*(e + f*x)^3)/(3*a^3*f) - (2*b*f^2*Cosh[c + d*x])/(a^2*d^3) - (b
*(e + f*x)^2*Cosh[c + d*x])/(a^2*d) - (f*(e + f*x)*Cosh[c + d*x]^2)/(2*a*d^2) - (b*Sqrt[a^2 + b^2]*(e + f*x)^2
*Log[1 + (a*E^(c + d*x))/(b - Sqrt[a^2 + b^2])])/(a^3*d) + (b*Sqrt[a^2 + b^2]*(e + f*x)^2*Log[1 + (a*E^(c + d*
x))/(b + Sqrt[a^2 + b^2])])/(a^3*d) - (2*b*Sqrt[a^2 + b^2]*f*(e + f*x)*PolyLog[2, -((a*E^(c + d*x))/(b - Sqrt[
a^2 + b^2]))])/(a^3*d^2) + (2*b*Sqrt[a^2 + b^2]*f*(e + f*x)*PolyLog[2, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2])
)])/(a^3*d^2) + (2*b*Sqrt[a^2 + b^2]*f^2*PolyLog[3, -((a*E^(c + d*x))/(b - Sqrt[a^2 + b^2]))])/(a^3*d^3) - (2*
b*Sqrt[a^2 + b^2]*f^2*PolyLog[3, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))])/(a^3*d^3) + (2*b*f*(e + f*x)*Sinh[
c + d*x])/(a^2*d^2) + (f^2*Cosh[c + d*x]*Sinh[c + d*x])/(4*a*d^3) + ((e + f*x)^2*Cosh[c + d*x]*Sinh[c + d*x])/
(2*a*d)

Rule 5594

Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Csch[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Int[((e + f*x)^m*Sinh[c + d*x]*F[c + d*x]^n)/(b + a*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f}, x]
 && HyperbolicQ[F] && IntegersQ[m, n]

Rule 5579

Int[(Cosh[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[1/b, Int[(e + f*x)^m*Cosh[c + d*x]^p*Sinh[c + d*x]^(n - 1), x], x]
 - Dist[a/b, Int[((e + f*x)^m*Cosh[c + d*x]^p*Sinh[c + d*x]^(n - 1))/(a + b*Sinh[c + d*x]), x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]

Rule 3311

Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*m*(c + d*x)^(m - 1)*(
b*Sin[e + f*x])^n)/(f^2*n^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x], x] - D
ist[(d^2*m*(m - 1))/(f^2*n^2), Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x], x] - Simp[(b*(c + d*x)^m*Cos[e +
f*x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5565

Int[(Cosh[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symb
ol] :> -Dist[a/b^2, Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2), x], x] + (Dist[1/b, Int[(e + f*x)^m*Cosh[c + d*x]^(
n - 2)*Sinh[c + d*x], x], x] + Dist[(a^2 + b^2)/b^2, Int[((e + f*x)^m*Cosh[c + d*x]^(n - 2))/(a + b*Sinh[c + d
*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3322

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[((c + d*x)^m*E^(-(I*e) + f*fz*x))/(-(I*b) + 2*a*E^(-(I*e) + f*fz*x) + I*b*E^(2*(-(I*e) + f*fz*x))), x], x]
 /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int \frac{(e+f x)^2 \cosh ^2(c+d x)}{a+b \text{csch}(c+d x)} \, dx &=\int \frac{(e+f x)^2 \cosh ^2(c+d x) \sinh (c+d x)}{b+a \sinh (c+d x)} \, dx\\ &=\frac{\int (e+f x)^2 \cosh ^2(c+d x) \, dx}{a}-\frac{b \int \frac{(e+f x)^2 \cosh ^2(c+d x)}{b+a \sinh (c+d x)} \, dx}{a}\\ &=-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{\int (e+f x)^2 \, dx}{2 a}-\frac{b \int (e+f x)^2 \sinh (c+d x) \, dx}{a^2}+\frac{b^2 \int (e+f x)^2 \, dx}{a^3}-\frac{\left (b \left (a^2+b^2\right )\right ) \int \frac{(e+f x)^2}{b+a \sinh (c+d x)} \, dx}{a^3}+\frac{f^2 \int \cosh ^2(c+d x) \, dx}{2 a d^2}\\ &=\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}-\frac{\left (2 b \left (a^2+b^2\right )\right ) \int \frac{e^{c+d x} (e+f x)^2}{-a+2 b e^{c+d x}+a e^{2 (c+d x)}} \, dx}{a^3}+\frac{(2 b f) \int (e+f x) \cosh (c+d x) \, dx}{a^2 d}+\frac{f^2 \int 1 \, dx}{4 a d^2}\\ &=\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}-\frac{\left (2 b \sqrt{a^2+b^2}\right ) \int \frac{e^{c+d x} (e+f x)^2}{2 b-2 \sqrt{a^2+b^2}+2 a e^{c+d x}} \, dx}{a^2}+\frac{\left (2 b \sqrt{a^2+b^2}\right ) \int \frac{e^{c+d x} (e+f x)^2}{2 b+2 \sqrt{a^2+b^2}+2 a e^{c+d x}} \, dx}{a^2}-\frac{\left (2 b f^2\right ) \int \sinh (c+d x) \, dx}{a^2 d^2}\\ &=\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{\left (2 b \sqrt{a^2+b^2} f\right ) \int (e+f x) \log \left (1+\frac{2 a e^{c+d x}}{2 b-2 \sqrt{a^2+b^2}}\right ) \, dx}{a^3 d}-\frac{\left (2 b \sqrt{a^2+b^2} f\right ) \int (e+f x) \log \left (1+\frac{2 a e^{c+d x}}{2 b+2 \sqrt{a^2+b^2}}\right ) \, dx}{a^3 d}\\ &=\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d}-\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{\left (2 b \sqrt{a^2+b^2} f^2\right ) \int \text{Li}_2\left (-\frac{2 a e^{c+d x}}{2 b-2 \sqrt{a^2+b^2}}\right ) \, dx}{a^3 d^2}-\frac{\left (2 b \sqrt{a^2+b^2} f^2\right ) \int \text{Li}_2\left (-\frac{2 a e^{c+d x}}{2 b+2 \sqrt{a^2+b^2}}\right ) \, dx}{a^3 d^2}\\ &=\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d}-\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac{\left (2 b \sqrt{a^2+b^2} f^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (\frac{a x}{-b+\sqrt{a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x}\right )}{a^3 d^3}-\frac{\left (2 b \sqrt{a^2+b^2} f^2\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2\left (-\frac{a x}{b+\sqrt{a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x}\right )}{a^3 d^3}\\ &=\frac{f^2 x}{4 a d^2}+\frac{(e+f x)^3}{6 a f}+\frac{b^2 (e+f x)^3}{3 a^3 f}-\frac{2 b f^2 \cosh (c+d x)}{a^2 d^3}-\frac{b (e+f x)^2 \cosh (c+d x)}{a^2 d}-\frac{f (e+f x) \cosh ^2(c+d x)}{2 a d^2}-\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d}+\frac{b \sqrt{a^2+b^2} (e+f x)^2 \log \left (1+\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d}-\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b \sqrt{a^2+b^2} f (e+f x) \text{Li}_2\left (-\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d^2}+\frac{2 b \sqrt{a^2+b^2} f^2 \text{Li}_3\left (-\frac{a e^{c+d x}}{b-\sqrt{a^2+b^2}}\right )}{a^3 d^3}-\frac{2 b \sqrt{a^2+b^2} f^2 \text{Li}_3\left (-\frac{a e^{c+d x}}{b+\sqrt{a^2+b^2}}\right )}{a^3 d^3}+\frac{2 b f (e+f x) \sinh (c+d x)}{a^2 d^2}+\frac{f^2 \cosh (c+d x) \sinh (c+d x)}{4 a d^3}+\frac{(e+f x)^2 \cosh (c+d x) \sinh (c+d x)}{2 a d}\\ \end{align*}

Mathematica [C]  time = 10.8305, size = 2340, normalized size = 4.59 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((e + f*x)^2*Cosh[c + d*x]^2)/(a + b*Csch[c + d*x]),x]

[Out]

(e^2*(c/d + x - (2*b*ArcTan[(a - b*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/(Sqrt[-a^2 - b^2]*d))*Csch[c + d*x]*(
b + a*Sinh[c + d*x]))/(4*a*(a + b*Csch[c + d*x])) + (e*f*Csch[c + d*x]*(x^2 + (2*b*((I*Pi*ArcTanh[(-a + b*Tanh
[(c + d*x)/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2 + b^2] + (2*(c + I*ArcCos[((-I)*b)/a])*ArcTan[((a - I*b)*Cot[((2*I)*
c + Pi + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]] + ((-2*I)*c + Pi - (2*I)*d*x)*ArcTanh[(((-I)*a + b)*Tan[((2*I)*c + P
i + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]] - (ArcCos[((-I)*b)/a] - 2*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x
)/4])/Sqrt[-a^2 - b^2]])*Log[((a + I*b)*(a - I*b + Sqrt[-a^2 - b^2])*(1 + I*Cot[((2*I)*c + Pi + (2*I)*d*x)/4])
)/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))] - (ArcCos[((-I)*b)/a] + 2*ArcTan[((a -
 I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]])*Log[(I*(a + I*b)*(-a + I*b + Sqrt[-a^2 - b^2])*(I
+ Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))] +
(ArcCos[((-I)*b)/a] + 2*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]] - (2*I)*ArcTanh
[(((-I)*a + b)*Tan[((2*I)*c + Pi + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]])*Log[-(((-1)^(3/4)*Sqrt[-a^2 - b^2]*E^(-c/
2 - (d*x)/2))/(Sqrt[2]*Sqrt[(-I)*a]*Sqrt[b + a*Sinh[c + d*x]]))] + (ArcCos[((-I)*b)/a] - 2*ArcTan[((a - I*b)*C
ot[((2*I)*c + Pi + (2*I)*d*x)/4])/Sqrt[-a^2 - b^2]] + (2*I)*ArcTanh[(((-I)*a + b)*Tan[((2*I)*c + Pi + (2*I)*d*
x)/4])/Sqrt[-a^2 - b^2]])*Log[((-1)^(1/4)*Sqrt[-a^2 - b^2]*E^((c + d*x)/2))/(Sqrt[2]*Sqrt[(-I)*a]*Sqrt[b + a*S
inh[c + d*x]])] + I*(PolyLog[2, ((I*b + Sqrt[-a^2 - b^2])*(a + I*b - I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2
*I)*d*x)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))] - PolyLog[2, ((b + I*Sqrt[
-a^2 - b^2])*(I*a - b + Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*
Cot[((2*I)*c + Pi + (2*I)*d*x)/4]))]))/Sqrt[-a^2 - b^2]))/d^2)*(b + a*Sinh[c + d*x]))/(4*a*(a + b*Csch[c + d*x
])) + (f^2*Csch[c + d*x]*(x^3 - (3*b*(d^2*x^2*Log[1 + (a*E^(c + d*x))/(b - Sqrt[a^2 + b^2])] - d^2*x^2*Log[1 +
 (a*E^(c + d*x))/(b + Sqrt[a^2 + b^2])] + 2*d*x*PolyLog[2, (a*E^(c + d*x))/(-b + Sqrt[a^2 + b^2])] - 2*d*x*Pol
yLog[2, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))] - 2*PolyLog[3, (a*E^(c + d*x))/(-b + Sqrt[a^2 + b^2])] + 2*P
olyLog[3, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))]))/(Sqrt[a^2 + b^2]*d^3))*(b + a*Sinh[c + d*x]))/(12*a*(a +
 b*Csch[c + d*x])) + (f^2*Csch[c + d*x]*(2*(a^2 + 4*b^2)*x^3 - (6*b*(3*a^2 + 4*b^2)*(d^2*x^2*Log[1 + (a*E^(c +
 d*x))/(b - Sqrt[a^2 + b^2])] - d^2*x^2*Log[1 + (a*E^(c + d*x))/(b + Sqrt[a^2 + b^2])] + 2*d*x*PolyLog[2, (a*E
^(c + d*x))/(-b + Sqrt[a^2 + b^2])] - 2*d*x*PolyLog[2, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))] - 2*PolyLog[3
, (a*E^(c + d*x))/(-b + Sqrt[a^2 + b^2])] + 2*PolyLog[3, -((a*E^(c + d*x))/(b + Sqrt[a^2 + b^2]))]))/(Sqrt[a^2
 + b^2]*d^3) - (24*a*b*Cosh[d*x]*((2 + d^2*x^2)*Cosh[c] - 2*d*x*Sinh[c]))/d^3 + (3*a^2*Cosh[2*d*x]*(-2*d*x*Cos
h[2*c] + (1 + 2*d^2*x^2)*Sinh[2*c]))/d^3 - (24*a*b*(-2*d*x*Cosh[c] + (2 + d^2*x^2)*Sinh[c])*Sinh[d*x])/d^3 + (
3*a^2*((1 + 2*d^2*x^2)*Cosh[2*c] - 2*d*x*Sinh[2*c])*Sinh[2*d*x])/d^3)*(b + a*Sinh[c + d*x]))/(24*a^3*(a + b*Cs
ch[c + d*x])) + (e^2*Csch[c + d*x]*(b + a*Sinh[c + d*x])*((a^2 + 4*b^2)*(c + d*x) - (2*b*(3*a^2 + 4*b^2)*ArcTa
n[(a - b*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] - 4*a*b*Cosh[c + d*x] + a^2*Sinh[2*(c + d*x)])
)/(4*a^3*d*(a + b*Csch[c + d*x])) + (e*f*Csch[c + d*x]*(b + a*Sinh[c + d*x])*((a^2 + 4*b^2)*(-c + d*x)*(c + d*
x) - 8*a*b*d*x*Cosh[c + d*x] - a^2*Cosh[2*(c + d*x)] - (2*b*(3*a^2 + 4*b^2)*(2*c*ArcTanh[(b + a*Cosh[c + d*x]
+ a*Sinh[c + d*x])/Sqrt[a^2 + b^2]] + (c + d*x)*Log[1 + (a*(Cosh[c + d*x] + Sinh[c + d*x]))/(b - Sqrt[a^2 + b^
2])] - (c + d*x)*Log[1 + (a*(Cosh[c + d*x] + Sinh[c + d*x]))/(b + Sqrt[a^2 + b^2])] + PolyLog[2, (a*(Cosh[c +
d*x] + Sinh[c + d*x]))/(-b + Sqrt[a^2 + b^2])] - PolyLog[2, -((a*(Cosh[c + d*x] + Sinh[c + d*x]))/(b + Sqrt[a^
2 + b^2]))]))/Sqrt[a^2 + b^2] + 8*a*b*Sinh[c + d*x] + 2*a^2*d*x*Sinh[2*(c + d*x)]))/(4*a^3*d^2*(a + b*Csch[c +
 d*x]))

________________________________________________________________________________________

Maple [F]  time = 0.339, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fx+e \right ) ^{2} \left ( \cosh \left ( dx+c \right ) \right ) ^{2}}{a+b{\rm csch} \left (dx+c\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^2*cosh(d*x+c)^2/(a+b*csch(d*x+c)),x)

[Out]

int((f*x+e)^2*cosh(d*x+c)^2/(a+b*csch(d*x+c)),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cosh(d*x+c)^2/(a+b*csch(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 2.0413, size = 5658, normalized size = 11.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cosh(d*x+c)^2/(a+b*csch(d*x+c)),x, algorithm="fricas")

[Out]

-1/48*(6*a^2*d^2*f^2*x^2 + 6*a^2*d^2*e^2 + 6*a^2*d*e*f - 3*(2*a^2*d^2*f^2*x^2 + 2*a^2*d^2*e^2 - 2*a^2*d*e*f +
a^2*f^2 + 2*(2*a^2*d^2*e*f - a^2*d*f^2)*x)*cosh(d*x + c)^4 - 3*(2*a^2*d^2*f^2*x^2 + 2*a^2*d^2*e^2 - 2*a^2*d*e*
f + a^2*f^2 + 2*(2*a^2*d^2*e*f - a^2*d*f^2)*x)*sinh(d*x + c)^4 + 3*a^2*f^2 + 24*(a*b*d^2*f^2*x^2 + a*b*d^2*e^2
 - 2*a*b*d*e*f + 2*a*b*f^2 + 2*(a*b*d^2*e*f - a*b*d*f^2)*x)*cosh(d*x + c)^3 + 12*(2*a*b*d^2*f^2*x^2 + 2*a*b*d^
2*e^2 - 4*a*b*d*e*f + 4*a*b*f^2 + 4*(a*b*d^2*e*f - a*b*d*f^2)*x - (2*a^2*d^2*f^2*x^2 + 2*a^2*d^2*e^2 - 2*a^2*d
*e*f + a^2*f^2 + 2*(2*a^2*d^2*e*f - a^2*d*f^2)*x)*cosh(d*x + c))*sinh(d*x + c)^3 - 8*((a^2 + 2*b^2)*d^3*f^2*x^
3 + 3*(a^2 + 2*b^2)*d^3*e*f*x^2 + 3*(a^2 + 2*b^2)*d^3*e^2*x)*cosh(d*x + c)^2 - 2*(4*(a^2 + 2*b^2)*d^3*f^2*x^3
+ 12*(a^2 + 2*b^2)*d^3*e*f*x^2 + 12*(a^2 + 2*b^2)*d^3*e^2*x + 9*(2*a^2*d^2*f^2*x^2 + 2*a^2*d^2*e^2 - 2*a^2*d*e
*f + a^2*f^2 + 2*(2*a^2*d^2*e*f - a^2*d*f^2)*x)*cosh(d*x + c)^2 - 36*(a*b*d^2*f^2*x^2 + a*b*d^2*e^2 - 2*a*b*d*
e*f + 2*a*b*f^2 + 2*(a*b*d^2*e*f - a*b*d*f^2)*x)*cosh(d*x + c))*sinh(d*x + c)^2 + 96*((a*b*d*f^2*x + a*b*d*e*f
)*cosh(d*x + c)^2 + 2*(a*b*d*f^2*x + a*b*d*e*f)*cosh(d*x + c)*sinh(d*x + c) + (a*b*d*f^2*x + a*b*d*e*f)*sinh(d
*x + c)^2)*sqrt((a^2 + b^2)/a^2)*dilog((b*cosh(d*x + c) + b*sinh(d*x + c) + (a*cosh(d*x + c) + a*sinh(d*x + c)
)*sqrt((a^2 + b^2)/a^2) - a)/a + 1) - 96*((a*b*d*f^2*x + a*b*d*e*f)*cosh(d*x + c)^2 + 2*(a*b*d*f^2*x + a*b*d*e
*f)*cosh(d*x + c)*sinh(d*x + c) + (a*b*d*f^2*x + a*b*d*e*f)*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*dilog((b*co
sh(d*x + c) + b*sinh(d*x + c) - (a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt((a^2 + b^2)/a^2) - a)/a + 1) - 48*((a
*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2*f^2)*cosh(d*x + c)^2 + 2*(a*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2*f^2)*cosh
(d*x + c)*sinh(d*x + c) + (a*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2*f^2)*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*l
og(2*a*cosh(d*x + c) + 2*a*sinh(d*x + c) + 2*a*sqrt((a^2 + b^2)/a^2) + 2*b) + 48*((a*b*d^2*e^2 - 2*a*b*c*d*e*f
 + a*b*c^2*f^2)*cosh(d*x + c)^2 + 2*(a*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2*f^2)*cosh(d*x + c)*sinh(d*x + c) +
(a*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2*f^2)*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*log(2*a*cosh(d*x + c) + 2*a
*sinh(d*x + c) - 2*a*sqrt((a^2 + b^2)/a^2) + 2*b) + 48*((a*b*d^2*f^2*x^2 + 2*a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a
*b*c^2*f^2)*cosh(d*x + c)^2 + 2*(a*b*d^2*f^2*x^2 + 2*a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a*b*c^2*f^2)*cosh(d*x + c
)*sinh(d*x + c) + (a*b*d^2*f^2*x^2 + 2*a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a*b*c^2*f^2)*sinh(d*x + c)^2)*sqrt((a^2
 + b^2)/a^2)*log(-(b*cosh(d*x + c) + b*sinh(d*x + c) + (a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt((a^2 + b^2)/a^
2) - a)/a) - 48*((a*b*d^2*f^2*x^2 + 2*a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a*b*c^2*f^2)*cosh(d*x + c)^2 + 2*(a*b*d^
2*f^2*x^2 + 2*a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a*b*c^2*f^2)*cosh(d*x + c)*sinh(d*x + c) + (a*b*d^2*f^2*x^2 + 2*
a*b*d^2*e*f*x + 2*a*b*c*d*e*f - a*b*c^2*f^2)*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*log(-(b*cosh(d*x + c) + b*
sinh(d*x + c) - (a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt((a^2 + b^2)/a^2) - a)/a) - 96*(a*b*f^2*cosh(d*x + c)^
2 + 2*a*b*f^2*cosh(d*x + c)*sinh(d*x + c) + a*b*f^2*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*polylog(3, (b*cosh(
d*x + c) + b*sinh(d*x + c) + (a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt((a^2 + b^2)/a^2))/a) + 96*(a*b*f^2*cosh(
d*x + c)^2 + 2*a*b*f^2*cosh(d*x + c)*sinh(d*x + c) + a*b*f^2*sinh(d*x + c)^2)*sqrt((a^2 + b^2)/a^2)*polylog(3,
 (b*cosh(d*x + c) + b*sinh(d*x + c) - (a*cosh(d*x + c) + a*sinh(d*x + c))*sqrt((a^2 + b^2)/a^2))/a) + 6*(2*a^2
*d^2*e*f + a^2*d*f^2)*x + 24*(a*b*d^2*f^2*x^2 + a*b*d^2*e^2 + 2*a*b*d*e*f + 2*a*b*f^2 + 2*(a*b*d^2*e*f + a*b*d
*f^2)*x)*cosh(d*x + c) + 4*(6*a*b*d^2*f^2*x^2 + 6*a*b*d^2*e^2 + 12*a*b*d*e*f + 12*a*b*f^2 - 3*(2*a^2*d^2*f^2*x
^2 + 2*a^2*d^2*e^2 - 2*a^2*d*e*f + a^2*f^2 + 2*(2*a^2*d^2*e*f - a^2*d*f^2)*x)*cosh(d*x + c)^3 + 18*(a*b*d^2*f^
2*x^2 + a*b*d^2*e^2 - 2*a*b*d*e*f + 2*a*b*f^2 + 2*(a*b*d^2*e*f - a*b*d*f^2)*x)*cosh(d*x + c)^2 + 12*(a*b*d^2*e
*f + a*b*d*f^2)*x - 4*((a^2 + 2*b^2)*d^3*f^2*x^3 + 3*(a^2 + 2*b^2)*d^3*e*f*x^2 + 3*(a^2 + 2*b^2)*d^3*e^2*x)*co
sh(d*x + c))*sinh(d*x + c))/(a^3*d^3*cosh(d*x + c)^2 + 2*a^3*d^3*cosh(d*x + c)*sinh(d*x + c) + a^3*d^3*sinh(d*
x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**2*cosh(d*x+c)**2/(a+b*csch(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x + e\right )}^{2} \cosh \left (d x + c\right )^{2}}{b \operatorname{csch}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^2*cosh(d*x+c)^2/(a+b*csch(d*x+c)),x, algorithm="giac")

[Out]

integrate((f*x + e)^2*cosh(d*x + c)^2/(b*csch(d*x + c) + a), x)